

Learning Objectives In this chapter you will learn about: § Reasons for using binary instead of decimal numbers § Basic arithmetic operations using binary numbers § Addition (+) § Subtraction (-) § Multiplication (*) § Division (/)

§ Information is handled in a computer by electronic/ electrical components § Electronic components operate in binary mode (can only indicate two states – on (1) or off (0) § Binary number system has only two digits (0 and 1), and is suitable for expressing two possible states § In binary system, computer circuits only have to handle two binary digits rather than ten decimal digits causing: § Simpler internal circuit design § Less expensive § More reliable circuits § Arithmetic rules/processes possible with binary numbers

Computer Fundamentals: Pradeep K, Sinha & Priti Sinha						
Examples of a Few Devices that work in						
Binary Mode						
	Binary State	On (1)	Off (0)			
	Bulb					
	Switch					
	Circuit Pulse					
	100			and the second		
Ref Page 50	С	hapter 5: Computer Ar	ithmetic	Slide 4/29		

Diagray	/ Arithn	actio
E2 L S L /	/	12116

- § Binary arithmetic is simple to learn as binary number system has only two digits 0 and 1
- § Following slides show rules and example for the four basic arithmetic operations using binary numbers

Binary Addition

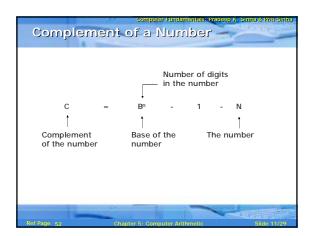
Rule for binary addition is as follows:

- 0 + 0 = 0
- 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 plus a carry of 1 to next higher column

Binary Addition (Example 1) Example Add binary numbers 10011 and 1001 in both decimal and binary form $% \left(1,0,0,0\right)$ Solution Binary Decimal carry 11 10011 carry 1 +1001 +9 11100 28 In this example, carry are generated for first and second columns Binary Addition (Example 2) Add binary numbers 100111 and 11011 in both decimal and binary form Solution The addition of three 1s can be broken up into two steps. First, we add only two 1s giving 10 (1 + 1 = 10). The third 1 is now added to this result to obtain 11 (a 1 sum with a 1 carry). Hence, 1 + 1 + 1 = 1, plus a carry of 1 to next higher column. Binary Decimal carry 11111 carry 1 100111 39 +11011 +27 1000010 66

Binary Subtraction Rule for binary subtraction is as follows: 0 - 0 = 0 0 - 1 = 1 with a borrow from the next column 1 - 0 = 1 1 - 1 = 0

Einary Subtraction (Example) Example Subtract 01110₂ from 10101₂ Solution \[\begin{array}{c} 12 \\ 0202 \\ 10101 \\ -01110 \\ 00111 \end{array} Note: Go through explanation given in the book



Complement of a Number (Example 1) Example Find the complement of 37_{10} Solution Since the number has 2 digits and the value of base is 10, (Base)¹⁰ - 1 = 10² - 1 = 99 Now 99 - 37 = 62 Hence, complement of 37_{10} = 62₁₀

Compl	ement of	a Number		
Examp	le Find the comple	ment of 6 ₈		
Solutio	on			
	base is 8,	0 0		ue of
Ref Page 53		5: Computer Arithmetic	\	
Kerrage 53	chapter	3. Computer Attention	S	lide 13/29
	100	Computer Fundamentals	s: Pradeep K. Sinha	& Priti Sini

	Con	ipute	ir Fur	dam	ental	s: Pr	adee	p K. Sinha &	Priti Sini
Complement of	3)	Bi	กะ	ניזו	/ 1	Ju.	nn).	ber	
Complement of a b transforming all its 0's									by
Example									
Complement of	1	0	1	1	0	1	0	is	
	ļ	1	1	1	1	1	ļ		
			0						
Note: Verify by conve	ntio	nal	con	nple	me	nt			

Involves following 3 steps: Step 1: Find the complement of the number you are subtracting (subtrahend) Step 2: Add this to the number from which you are taking away (minuend) Step 3: If there is a carry of 1, add it to obtain the result; if there is no carry, recomplement the sum and attach a negative sign

Complementary Method of Subtraction

Complementary subtraction is an additive approach of subtraction

Example: Subtract 56_{10} from 92_{10} using complementary method. Solution Step 1: Complement of 56_{10} = $10^2 \cdot 1 \cdot 56 = 99 - 56 = 43_{10}$ Step 2: 92 + 43 (complement of 56) = 135 (note 1 as carry) Step 3: 35 + 1 (add 1 carry to sum) Step 3: 35 + 1 (add 1 carry to sum) Parameter $92 \cdot 56 = 36$ Result = 36

Example Subtract 35_{10} from 18_{10} using complementary method. Solution Step 1: Complement of 35_{10} $= 10^2 - 1 - 35$ = 99 - 35 $= 64_{10}$ Step 2: 18 + 64 (complement $-\frac{10}{82}$ Step 3: Since there is no carry, re-complement the sum and attach an equative sign to obtain the result. Result = -(99 - 82) = 17The result may be verified using normal subtraction: 18 - 35 = -17

Example Subtract 0111000₂ (56₁₀) from 1011100₂ (92₁₀) using complementary method. Solution 1011100 +1000111 (complement of 0111000) 10100100 Result = 0100100₂ = 36₁₀

Computer Fundamentals: Pradeep K, Sinha & Priti Sinha
Binary Subtraction Using Complementary Method
(Example 2)
(Indinipio I)
Example
Subtract 100011_2 (35_{10}) from 010010_2 (18_{10}) using complementary method.
Solution
010010 +011100 (complement of 100011)
101110
Since there is no carry, we have to complement the sum and attach a negative sign to it. Hence,
Result = -010001_2 (complement of 1011110_2) = -17_{10}
Ref Page 54 Chapter 5: Computer Arithmetic Slide 19/29

Binary Multiplication
Table for binary multiplication is as follows:
$0 \times 0 = 0$
$0 \times 1 = 0$
$1 \times 0 = 0$
1 x 1 = 1

Example Multiply the binary numbers 1010 and 1001 Solution 1010 Multiplicand x1001 Multiplier 1010 Partial Product 0000 Partial Product 0000 Partial Product 1010 Partial Product 1010 Final Product 1011 Final Product 101101 Final Product

Binary Multiplication (Example 2) Whenever a 0 appears in the multiplier, a separate partial product consisting of a string of zeros need not be generated (only a shift will do). Hence, 1010 x1001 1010 1010SS (S = left shift) 1011010 Binary Division Table for binary division is as follows: $0 \div 0 = Divide by zero error$ 0 ÷ 1 = 0 1 ÷ 0 = Divide by zero error As in the decimal number system (or in any other number system), division by zero is meaningless The computer deals with this problem by raising an error condition called 'Divide by zero' error Rules for Binary Division 1. Start from the left of the dividend 2. Perform a series of subtractions in which the divisor is subtracted from the dividend 3. If subtraction is possible, put a 1 in the quotient and subtract the divisor from the corresponding digits of 4. If subtraction is not possible (divisor greater than remainder), record a 0 in the quotient 5. Bring down the next digit to add to the remainder digits. Proceed as before in a manner similar to long

division

Binary Division (Example 1) Divide 100001₂ by 110₂ Solution 0101 (Quotient) 110 100001 (Dividend) 110 Divisor greater than 100, so put 0 in quotient 2 •— 1000 Add digit from dividend to group used above 3 ----Subtraction possible, so put 1 in quotient Remainder from subtraction plus digit from dividend Divisor greater, so put 0 in quotient Add digit from dividend to group 1001 6 + Subtraction possible, so put 1 in quotient 11 Remainder

Additive Method of Multiplication and Division

Most computers use the additive method for performing multiplication and division operations because it simplifies the internal circuit design of computer systems

Example

 $4 \times 8 = 8 + 8 + 8 + 8 = 32$

Rules for Additive Method of Division

- § Subtract the divisor repeatedly from the dividend until the result of subtraction becomes less than or equal to
- § If result of subtraction is zero, then:
 - § quotient = total number of times subtraction was performed
 - § remainder = 0
- If result of subtraction is less than zero, then:
 - § quotient = total number of times subtraction was performed minus 1
 - § remainder = result of the subtraction previous to the last subtraction

	of Division (Example)
Example Divide 3310 by 610 L	using the method of addition
Solution:	
33 - 6 = 27 27 - 6 = 21 21 - 6 = 15 15 - 6 = 9	Since the result of the last subtraction is less than zero,
9 - 6 = 3 3 - 6 = -3	Quotient = 6 - 1 (ignore last subtraction) = 5
Total subtractions = 6	Remainder = 3 (result of previous subtraction)
Ref Page 58 Chapter	5: Computer Arithmetic Slide 28/29

100	Computer Fundamentals: Pradeep K. Sinha & Priti Sini
Key Words/	Phrases
§ Additive method of	division
§ Additive method of	
§ Additive method of	•
§ Binary addition	
§ Binary arithmetic	
§ Binary division	
§ Binary multiplicatio	on
§ Binary subtraction	
§ Complement	htraction
§ Complementary sul § Computer arithmet	
3 computer antimiet	ic .