
\qquad
\qquad
\qquad
\qquad
Learnjig Objectives
In this chapter you will learn about:
B Reasons for using binary instead of decimal
numbers
B Basic arithmetic operations using binary numbers
BAddition (+)
BSubtraction $(-)$
BMultiplication (*)
B Division (/)
\qquad
\qquad
Reasons for using binary instead of decimal numbers BAddition (+)
B Subtraction (-)
\qquad

B Multiplication (*)
BDivision (/)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Add binary numbers 10011 and 1001 in both decimal and binary form
Solution

Binary	Decima
carry 11	carry
10011	19
+1001	+9
11100	28

Ref Page 51
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

Subtract 01110_{2} from 10101_{2}
Solution
$\left\{\begin{array}{l}12 \\ 0202\end{array}\right.$
10101
-01110
00111
Note: Go through explanation given in the book

Slide 10/29

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Involves following 3 steps:
Step 1: Find the complement of the number you

are subtracting (subtrahend) | Step 2: Add this to the number from which you |
| ---: |
| are taking away (minuend) |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binary Subtraction Using Complementary Metinod (Example 1)

Example

Subtract $0111000_{2}\left(56_{10}\right)$ from $1011100_{2}\left(92_{10}\right)$ using \qquad complementary method.

Solution

1011100
+1000111 (complement of 0111000)
$\stackrel{\square}{\square}$
1 (add the carry of 1)
0100100
Result $=0100100_{2}=36_{10}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Binasy Divisjos

Table for binary division is as follows:
$0 \div 0=$ Divide by zero error
$0 \div 1=0$
$1 \div 0=$ Divide by zero error
$1 \div 1=1$
As in the decimal number system (or in any other number system), division by zero is meaningless \qquad
The computer deals with this problem by raising an error condition called 'Divide by zero' error \qquad
\qquad

[^0]
Example

Divide 100001_{2} by 110_{2}
Solution 0101 (Quotient)
110 100001 (Dividend)
Divisor greater than 100, so put 0 in quotient Add digit from dividend to group used above Subtraction possible, so put 1 in quotient Remainder from subtraction plus digit from dividend Divisor greater, so put 0 in quotient Add digit from dividend to group Subtraction possible, so put 1 in quotient
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Most mult the Exam 4×8	use the additive method for performing and division operations because it simplifies it design of computer systems $8+8=32$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rules for Aclajejve juethod of Divisjon

B Subtract the divisor repeatedly from the dividend until the result of subtraction becomes less than or equal to zero
B If result of subtraction is zero, then:
ß quotient $=$ total number of times subtraction was performed

B remainder $=0$
B If result of subtraction is less than zero, then:
B quotient $=$ total number of times subtraction was performed minus 1
B remainder = result of the subtraction previous to the last subtraction

[^0]: Rules for Binary Division

 1. Start from the left of the dividend
 2. Perform a series of subtractions in which the divisor is subtracted from the dividend
 3. If subtraction is possible, put a 1 in the quotient and subtract the divisor from the corresponding digits of dividend
 4. If subtraction is not possible (divisor greater than remainder), record a 0 in the quotient
 5. Bring down the next digit to add to the remainder digits. Proceed as before in a manner similar to long division
